ДЕПОНИРОВАНИЕ УГЛЕРОДА ПРИ ФОРМИРОВАНИИ ВТОРИЧНЫХ ЭКОСИСТЕМ НАРУШЕННЫХ ГОРНИМИ РАБОТАМИ ЗЕМЕЛЬ

А.Г. Шапарь, О.А. Скрипник, С.Н. Сметана

Институт проблем природопользования и экологии НАН Украины

г. Днепропетровск, 49000, ул. Московская, 6

Тел. + 380567900392;

E-mail: ruta_dnepr@mail.ru

Круглий стіл «Низько-вуглецеві інновації для вирішення регіональних екологічних проблем» 15.12.2011 р., м. Запоріжжя

Разрушение экосистем ведет к нарушению баланса углерода

Учетная площадь нарушенных земель только в Днепропетровской области составляет 36 тыс. га, оценки реальной площади достигают 100 тыс. га. Отсутствие растительного и почвенного покрова на этих территориях исключает возможность выполнения биосферных функций саморегуляции.

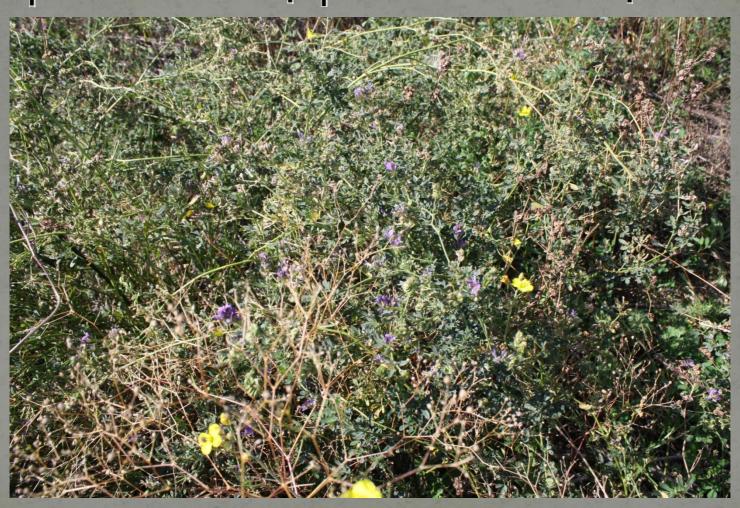
Отвалы Кривбасса

Шламохранилища Кривбасса

Создание растительного покрова ведет к формированию биомассы и поглощению избытка углекислого газа из атмосферы в результате фотосинтеза.

Теоретически степная растительность может ежегодно создавать до 20 т биомассы /га в результате которой фотосинтеза аккумулируется до 12 т углерода /га и, таким образом, поглощать до 60 т углекислого газа

Исследования формирования вторичных экосистем на опытном участке отвала № 3 Ингулецкого ГОКа (Кривбасс) свидетельствуют о ежегодном образовании не менее 10 т биомассы /га и депонировании не менее 4 т углерода/га


Вторичные донниковые травянистые сообщества на опытном участке

Вторичные акациевые сообщества

Вторичные люцерновые сообщества

Вторичные аморфовые сообщества

Средняя ежегодная продуктивность и аккумуляция углерода вторичными растительными сообществами

Растительные сообщества	Чистая первичная продукция (NPP), т/га	Аккумуляция углерода, т/га	
Донниковые	95	57	
Люцерновые	68	41	
Акациевые	55	33	
Аморфовые	65	39	
Дубовые	5	3	

Формирование почвенного покрова ведет к накоплению гумусовых веществ и депонированию в них углерода.

Накопление гумуса в почвах может достигать 700 т/га (черноземы типичные тучные тяжелосуглинистые), депонирование углерода достигает 400 т/га.

Ежегодное накопление гумуса в развитых екосистемах составляет 0,5-1,0 т/га, депонирование углерода при этом составляет 0,3-0,6 т/га.

Накопление гумуса и депонирование углерода во вторичных почвах

Вторичные экосистемы	Запасы гумуса, т/га	Депониро- вание углерода, т/га
Техноземы каменистых суглинков заказника «Визирка» (Ингулецкий ГОК)	10	6
Техноземы суглинков заказника «Грушевский» (Марганецкий ГОК)	15	9
Техноземы суглинков заказника «Вершина» (Просянской ГОК)	18	11

Почвы способны поглощать на поверхности агрегатов парниковые газы, в том числе, метан и водяной пар.

Концентрация метана, по данным невакуумной газовой съемки, в почвах, расположенных над подземными хранилищами газ, а достигает 10000 ppm (1 % об). Таким образом почвы могут удерживать 50 м³ метана/га.

Управление процессами испарения воды из почвы может способствовать поддержанию влажности воздуха на комфортном уровне.

Применение осадков сточных вод для активизации восстановления экосистем способствует их утилизации, депонированию углерода в тканях растений и гумусе почвы

Сегодня только на станции аэрации №1 КП «Кривбассводоканал» накоплено более 150 тыс. т осадков сточных вод, которые служат источником загрязнения окружающей среды, в том числе и парниковыми газами, метаном углекислым газом.

Полигон хранения занимает более 20 га

Внесение осадков сточных вод способствует активизиции развития растительного покрова

почвенный покров Растительный И карбонатов исключают контакт вскрышных пород отвалов кислотными осадками и, таким образом, сокращают эмиссию углекислого при разложении карбонатов

$$CaCO_3 + H_2SO_4 = CaSO_4 + H_2O$$

+ CO_2

Выводы

- 1. Создание растительного покрова ведет к формированию биомассы и поглощению избытка углекислого газа из атмосферы в результате фотосинтеза.
- 2. Формирование почвенного покрова ведет к накоплению гумусовых веществ и депонированию в них углерода
- 3. Почвы способны поглощать на поверхности агрегатов парниковые газы, в том числе, метан и водяной пар.
- 4. Применение осадков сточных вод для активизации восстановления экосистем способствует их утилизации и переводу в малоподвижное состояние углерода
- 5. Растительный и почвенный покров исключают контакт карбонатов вскрышных пород отвалов с кислотными осадками и, таким образом, сокращают эмиссию углекислого газа при разложении карбонатов